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I. OVERVIEW 

A. Background 

In this report, we update our approach to estimating value-added models of teacher 
effectiveness in the District of Columbia Public Schools (DCPS) and eligible DC charter schools 
participating in Race to the Top (RTT) during the 2012–2013 school year. To better meet the needs 
of DC schools, the Office of the State Superintendent of Education (OSSE) approved nine changes 
to how value added was calculated for the 2012–2013 school year. OSSE authorized Mathematica 
Policy Research to conduct research during the 2011–2012 school year to explore how changes to 
the value-added model might affect teachers’ value-added estimates if the changes were 
implemented during the 2012–2013 school year. At the conclusion of that research, OSSE sought 
our recommendations, gathered advice from an eight-member Technical Advisory Board, and 
consulted with the Technical Support Committee, composed of six representatives from DCPS and 
DC charter schools. The changes are (1) expanding the value-added model to include 9th- and 10th-
grade reading/English Language Arts teachers; (2) accounting for the influence of classroom 
characteristics on student achievement; (3) allowing the relationships between student characteristics 
and student achievement to vary by elementary, middle, and high school grade spans; (4) estimating 
relationships between student characteristics and student achievement using two student cohorts; 
(5) accounting for the relationship between student achievement and transferring between schools 
during the school year; (6) accounting for poverty status using multiple years of data on student free 
and reduced-price lunch (FRL) status; (7) equalizing student weights in estimating the association 
between student characteristics and student achievement; (8) explicitly accounting for estimation 
error when calculating the standard deviation of value-added scores within each grade; and 
(9) removing students not taught by an eligible teacher from the analysis file. 

We provide an overview of the changes to the value-added model in nontechnical terms 
(remainder of Chapter I); update last year’s technical report by describing the data used to estimate 
teacher value added in the 2012–2013 school year (Chapter II); and provide the details of the 
statistical methods used to estimate teacher and school value added in 2012–2013, including 
technical details of the changes to the value-added model (Chapter III). In Chapters II and III, we  
include tables of diagnostic information that summarize the population of students and teachers on 
which the value-added estimates are based, as well as the results from the statistical model used to 
produce those estimates. For a broader discussion of value added as a measure of effective teaching, 
the use of value added within teacher evaluation systems in DC schools, and a non-technical 
description of the steps used to estimate value added in DC, please refer to last year’s technical 
report (Isenberg and Hock 2012). 

B. Updates to the DC Value-Added Model 

1. Include Teachers of 9th- and 10th-Grade Students in Reading/English Language Arts 

For the first time, we estimated the value added of reading/English Language Arts (ELA) 
teachers of 9th- and 10th-grade students, in addition to calculating value added for teachers of 4th- 
through 8th-grade students. We used 9th-grade reading tests that were given to DCPS students from 
2011 to 2013 and to charter school students in 2012 and 2013. We also used the 10th-grade reading 
tests given to all DC students in 2012 and 2013. OSSE has chosen not to extend value added to high 
school math teachers because math courses tend to be content specific (for example, algebra or 
geometry), so a single citywide math test would be unlikely to capture the material for any teacher’s 
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particular course. Charter local education agencies (LEAs) chose individually whether to participate 
in providing data for value-added estimates for high school reading/ELA teachers. Therefore, value-
added estimates for high school teachers should be interpreted as how a teacher compares to 
teachers at other participating schools, not to those at all RTT schools. 

As with students in upper elementary and middle school grades, we accounted for prior test 
scores. For 9th-grade students, we accounted for math and reading pre-test scores from 8th grade. 
Because there is not a statewide standardized test in math given in 9th grade, for 10th-grade students 
we used a reading pre-test from 9th grade and a math pre-test from 8th grade. As in the past, the 
relationships between pre-test and post-test scores were allowed to vary by grade level—we 
estimated distinct relationships for each pre-test grade level from grades 3 through 7 in math and 
grades 3 through 9 in reading.  

2. Account for Classroom Characteristics 

In addition to individual student characteristics, we accounted for a set of classroom 
characteristics that allow for the possibility that students may perform differently in different 
classroom environments. For example, students may perform better when they have higher-
performing or more advantaged peers. Another possibility is that it may be more difficult for a 
teacher to target instruction in a class with a greater diversity of skill levels. Thus, at all grade levels, 
we accounted for average classroom achievement and the variability of classroom achievement. For 
grade 6 and above, we also accounted for the proportion of students eligible for FRL. 

Our methodology allows us to distinguish the effect of classroom composition on student 
achievement from the correlation between classroom composition and teacher effectiveness that can 
arise from the way in which teachers are matched to schools and classrooms. For example, assume 
that more effective teachers are incentivized to teach at schools with many disadvantaged students. 
In this example, even if students did not affect one another’s performance in class, teacher-level 
student characteristics and effective teaching would be correlated. However, this association would 
be caused by the way in which teachers are matched to students, rather than by how students affect 
each other’s achievement. 

Therefore, we estimated the effects of classroom composition on the achievement of a given 
student by comparing students in multiple classrooms for a given teacher. By relying on differences 
in classroom composition for multiple classrooms of the same teacher, we isolated the relationship 
between classroom composition and student achievement without confounding the effect of 
classroom composition with the way in which teachers are matched to students. For homeroom 
teachers, we used two years of data to obtain more than one classroom per teacher. To obtain 
multiple classrooms for departmentalized math and reading teachers (more common at the middle 
school level), we used data on multiple classrooms within each year as well as between years. 
(Because definitions of student FRL changed from year to year, we relied on variation across 
classrooms within the 2012-2013 school year to estimate the relationship between the proportion of 
FRL students and individual student achievement for middle school students. We excluded the 
proportion FRL from the value-added model for grades 4 and 5 since we relied mainly on year-to-
year variation in the composition of a teacher’s classroom in these grades.) 

3.  Allow Relationships Between Characteristics and Achievement to Vary by Grade Span 

We allowed the relationships between all student characteristics and student achievement to 
vary for each of three grade spans: grades 4 and 5, grades 6 through 8, and grades 9 and 10. By 
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allowing for separate relationships by grade span, we targeted relationships between student 
characteristics and achievement more accurately. In the past, only relationships between pre-test 
scores and achievement were allowed to vary for each individual grade level; for other student 
characteristics, estimates were pooled so that the relationships did not vary across grade levels. The 
inclusion of high school reading/ELA teachers in the value-added model increased concern about 
pooling estimates across grades: the relationships between student characteristics and achievement in 
4th grade may differ from those in 10th grade. In addition, the relationships between classroom 
composition and student achievement may differ at elementary, middle, and high school grade 
levels, further reinforcing the desirability of allowing for more variation by switching from a pooled 
approach to a grade-span approach.  

In prior years, by pooling all grades together and “borrowing strength” from other grade spans, 
we were able to estimate relationships more precisely than by doing so within a grade span. 
Compared to value-added models from the 2010–2011 school year and before, however, the 
inclusion of charter school students adds precision by increasing the number of students on which 
value-added models are based. To further increase precision, we added an additional cohort of data, 
as explained in the next section. The grade-span approach represents an intermediate option 
between the pooled approach and an individual grade-level approach. It balances the trade-off 
between (1) obtaining more precise estimates of the relationships between student characteristics 
and achievement and (2) accurately reflecting differences across grades. 

4. Estimate Relationships Between Characteristics and Achievement Using Two Student 
Cohorts 

We used two student cohorts to estimate the model, although teachers’ value added was 
calculated based on their students in the 2012–2013 school year with post-tests from 2013 and pre-
tests from 2012. We included the student cohort from the 2011–2012 school year (with post-tests 
from 2012 and pre-tests from 2011) to (1) provide more precise estimates of the relationships 
between student characteristics and achievement and (2) provide multiple classrooms to estimate the 
association between classroom composition and student achievement within a teacher. For 
homeroom teachers who teach a single classroom each year, the second student cohort allowed us 
to estimate classroom composition relationships. For teachers in middle and high school grades, 
who generally had multiple classrooms within a year, adding a second cohort improved the precision 
of these estimates by adding more classrooms per teacher. Including the extra cohort of students 
also improved the estimates of the relationships between student characteristics and achievement, 
but did not affect the students or students’ achievement data that directly inform a teacher’s value-
added estimate. Teachers’ value-added estimates measure their contributions to student achievement 
during the 2012–2013 school year, not the contributions made during the 2011–2012 school year. 

5. Account for Relationship Between Student Achievement and Transferring Schools 
During the School Year 

In addition to accounting for past test scores, poverty status, and other characteristics, we 
accounted for whether a student transferred into or out of a teacher’s school in the middle of the 
year. Students who transferred schools during the school year may have experienced a disruptive 
environment outside of school that led to lower performance compared to similar students who did 
not transfer schools. By accounting for mid-year transfers, teachers of a transfer students were not 
held accountable for circumstances outside their control that were related to these disruptions.  
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6. Account for Poverty Status Using Multiple Years of Data  

We used information on the poverty status of individual students for up to four school years, 
beginning with the 2009–2010 school year. In the past, we included indicators to account for 
differences in student achievement by paid, free, and reduced-price lunch eligibility in the current 
year and imputed missing data for these variables for students enrolled in community-eligible (CE) 
schools, which do not collect annual information about individual student poverty status. The 
number of CE schools grew considerably in the 2012–2013 school year, however, decreasing the 
viability of imputing individual-level data missing for this reason. Thus, for the 2012–2013 value-
added model, we included indicators tracking a student’s status in each year since the 2009–2010 
school year. For each of those four years, we categorized students as belonging to one of these 
groups: ineligible for FRL, eligible for free lunch, eligible for reduced-price lunch, attending a CE 
school, or lacking information on FRL eligibility that year. Although many CE students did not have 
an individual status in the 2012–2013 school year, some of these students did have an individual 
status in a previous year when this information was collected. Including students’ prior poverty 
status information can help address the limitations of information from the current school year, so 
that teachers are not held accountable for factors beyond their control. Because not all poverty 
status categories were universally available for all years, the specific categories included vary by year. 

7. Equalize Student Weights (Full Roster-Plus Method) 

We equalized the weight given to each student when estimating the association between student 
characteristics and student achievement, while still apportioning teachers’ responsibility for the 
student based on the fraction of the year they spend with the teacher, regardless of how many 
teachers claimed them. To achieve this, we designed a method of accounting for team-teaching 
called the Full Roster-Plus Method (FRM+), an improvement of the Full Roster Method (FRM) that 
we had developed previously. Under the FRM, we accounted for team teaching using multiple 
teacher-student links for each student and weights based on the amount of time each teacher taught 
the student (Hock and Isenberg 2012). The FRM allows for value-added estimates to be calculated 
for any variety of team-teaching circumstances, preserving the relative weights of students within a 
teacher. A side effect of the FRM, however, is that it effectively double-counts students taught by 
two teachers, so that these students received a full weight with each of their teachers. This causes 
these students to receive extra weight when calculating the relationship between student 
characteristics and achievement. 

The FRM+ has all of the features of the FRM but offers an additional benefit: the FRM+ 
ensures that each student contributed equally to the calculation of the relationship between student 
characteristics and achievement. The FRM+ accomplishes this overall equal weighting by duplicating 
each teacher-student link, assigning weights to the new links so that each student has records that 
sum to the same total weight. Each student thereby contributes equally to the estimates of student 
characteristics without affecting the proportional contributions of co-taught students to teachers’ 
scores.  

8. Account for Estimation Error in Calculating the Standard Deviation of Value Added 

In the past, after calculating initial teacher value-added estimates using a multiple regression 
model, we have multiplied each teacher’s estimate by a grade-specific conversion factor to ensure 
that the dispersion of teacher value-added scores is similar in each grade. This assumes that the 
variation in teachers’ effectiveness is similar across grade levels. The grade-specific conversion factor 
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was equal to the average standard deviation of value-added estimates across all grades, divided by the 
standard deviation of value-added estimates for the teacher’s grade. 

We changed the method for calculating the standard deviation of teacher effects within each 
grade to explicitly account for “estimation error”―that is, the imprecision with which teacher 
effectiveness is measured. The measured variability of value-added estimates reflects two parts—the 
true underlying variance of teacher effectiveness and the estimation error. By including both the true 
variance and estimation error, the unadjusted standard deviation of value-added estimates may 
overstate the true variability of teacher value added and could lead to over- or underweighting one 
or more grades when combining grade-specific scores for teachers of multiple grades. The new 
method better reflects our assumption that the variation in teachers’ true effectiveness is the same 
for all grades. 

9. Remove Students Not Linked to an Eligible Teacher from the Analysis File 

We excluded from the analysis file those students not taught by a teacher eligible to receive a 
value-added estimate. In the past, to increase the precision of the estimates, we included these 
students in the model by linking them to a single catch-all ineligible teacher. However, the 
estimation of the relationship between student characteristics and achievement then was then based 
in part on cross-school differences in students. To ensure better accuracy, we dispensed with links to 
a catch-all ineligible teacher, including links for students who were also linked to an eligible teacher 
for at least part of the school year. 
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II. DATA 

In this chapter, we review the data used to generate the value-added measures. We discuss the 
standardized assessment used in DC schools, the data on student background characteristics, and 
how we calculated the amount of time that students spent in more than one school or with more 
than one teacher. We also provide an overview of the roster confirmation process that allows 
teachers to confirm whether and for what portion of the year they taught math or reading to 
students.  

A. DC CAS Test Scores 

We included in the analysis file 4th- through 10th-grade students with a DC Comprehensive 
Assessment System (CAS) test from 2013 (the post-test) if they had a DC CAS test from the 
previous grade in the same subject in 2012 (the pre-test).1 We excluded students from the analysis 
file in the case of missing or conflicting test score or student background data.2,3 We also excluded 
students who repeated or skipped a grade, as they lacked pre- and post-test scores in consecutive 
grades and years. Finally, we excluded students not linked to a teacher eligible to receive a value-
added estimate for the student’s grade level either because the students (1) were not taught by a DC 
teacher for at least 5 percent of the school year, (2) were included in the roster file but not claimed 
by a teacher, or (3) were claimed only by a teacher with fewer than seven students in his or her grade 
(as we do not estimate a value-added measure for teachers with so few students). We applied 
analogous rules for inclusion in the model to students with a DC CAS test from 2012.4 After 
applying these rules, we reported estimates only for teachers who taught 15 or more students over 
the course of the 2012–2013 school year in at least one subject. For example, we would report an 
estimate for a teacher who claimed eight students in grade 4 and seven students in grade 5. For a 
teacher who claimed nine students in grade 4 and six students in grade 5, however, the grade 5 
students would not be linked to the teacher because they would not meet the seven-student 
minimum in that grade level. So we would not report a value-added estimate for this teacher. 

Table II.1 shows the total number of students who could have been included in the analyses, 
the reasons they were excluded, and the total included in the models. The first two columns show 
the totals for students in math, and the last two columns show the totals for reading. The top row of 
the table shows the total number of students who received test scores for the math or reading DC 
CAS test. The number of students was larger in reading than in math because we included students 
with post-tests in grades 4 to 10 for reading, but only in grades 4 to 8 for math. The next four rows 
show the reasons why students who had these post-test scores were excluded from the analysis file. 
As shown in the bottom row of the table, 87.3 percent of students with 2013 test scores were 

                                                 
1 We excluded most grade 10 charter school students in the 2011–2012 school year from the analysis file because 

the grade 9 reading test was first given to charter school students in 2012, so we could not include a pre-test from the 
prior grade and year. Of these students, 13 remain in the analysis file because they were tested in DCPS in 2011. 

2 We considered some students with scores on the DC CAS post-test to be missing test score data because the 
scores were flagged as incomplete by CTB/McGraw Hill. 

3 We included students who were missing individual student background characteristics but excluded those for 
whom no data on background characteristics were available. 

4 DCPS provided us with DC CAS test scores for DCPS students from 2010 and 2011. OSSE provided us with 
DC CAS scores for charter school students from 2011 and for all DC students in 2012 and 2013. 
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included in the value-added model for math, and 83.9 percent for reading. The most common 
reason students were excluded was lack of pre-test scores. 

For each subject, the DC CAS is scored so that the first digit is a grade indicator that does not 
reflect student achievement. For example, a 3rd-grade student could receive a scale score from 
300 to 399, a 4th-grade student from 400 to 499, and so on. The range for grade 9 and grade 10 
students is 900 to 999.5 For the value-added model, we dropped the first digit and used the rest of 
the score, which ranged from 0 to 99. 

The resulting scores may be meaningfully compared only within grades and subjects; math 
scores, for example, generally are more dispersed than reading scores within the same grade. 
Therefore, before using the test scores in the value-added model, we created subject- and grade-
specific z-scores by subtracting the mean and dividing by the standard deviation within a subject-
grade combination.6 This step allowed us to translate math and reading scores in every grade and 
subject into a common metric. To create a measure with a range resembling the original DC 
CAS-point metric, we then multiplied each test score by the average standard deviation across all 
grades within each subject and year. 

Table II.1. Reasons Students Tested in 2013 Were Excluded from the Analysis Files 

 

Math  Reading 

Number Percent  Number Percent 

Students with Post-Test Scores 18,330 100.0 23,664 100.0 

(1) Student has conflicting post-test scores 0 0.0 2 0.0 

(2) Missing same-subject pre-test scores 1,519 8.3 2,531 10.7 

(3) Skipped or repeated a grade 305 1.7 643 2.7 

(4) Not linked to an eligible teacher 508 2.8 639 2.7 

Total Excluded 2,332 12.7 3,815 16.1 

Total Included in Value-Added Model 15,998 87.3 19,849 83.9 

Notes: Students are included in this table only if they were included in roster confirmation and could be linked 
to background characteristics. This excludes only those enrolled in charter schools not participating in 
Race to the Top. 

 Students are excluded sequentially in the order presented and so do not count for more than one 
reason in this table. 

 The value-added model includes DCPS and charter school students in grades 4–8 for math and grades 
4–10 for reading. 

B. Student Background Data 

We used data provided by OSSE and DCPS to construct variables used in the value-added 
model as controls for student background characteristics. The value-added model accounts for the 
following: 
                                                 

5 The DC CAS test score file also indicated the grade level for each student, which allowed us to distinguish 
students in grades 9 and 10. 

6 Subtracting the mean score for each subject and grade creates a score with a mean of zero in all subject-grade 
combinations. 
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 Pre-test in same subject as post-test 

 Pre-test in other subject (we control for math and reading pre-tests regardless of 
post-test) 

 Poverty status 

 Limited English proficiency status 

 Existence of a specific learning disability 

 Existence of other types of disabilities requiring special education 

 Transfer of students across schools during the school year 

 Proportion of days the student attended school during the previous year 

We also will account for three classroom characteristics: 

 Average classroom pre-test scores 

 Standard deviation of classroom pre-test scores 

 Fraction of free or reduced-price eligible students in the classroom 

Attendance is a measure of student motivation. We used previous—rather than current-year—
attendance to avoid confounding student attendance with current-year teacher effectiveness; that is, 
a good teacher might be expected to motivate students to attend school more regularly than a 
weaker teacher would. The proportion of the days a student attended school is a continuous variable 
that could range from zero to one. Aside from pre-test variables, the other variables are binary, 
taking a value of zero or one.  

To account for poverty status, we used data on FRL eligibility for multiple school years, 
beginning with 2009–2010. Including students’ prior poverty status is particularly important for 
those attending a CE school, because these schools do not collect annual information about 
individual student poverty status. Schools are eligible to become CE if they have a student 
population composed of at least 40 percent with an identified need for free lunch based on direct 
certification, where students qualify based on their families’ participation in state welfare or food 
stamp programs. These schools provide free breakfasts and lunches to all enrolled students and 
forgo collecting individual student FRL applications. In the 2012–2013 school year, the number of 
CE schools in DC grew from 66 DCPS schools and no charter schools to 88 DCPS schools and 
27 charter schools. 

In addition to creating indicators for paid, free, or reduced-price lunch status, we created 
additional indicators for students who attended a CE school and those who had no available 
information that year. Some individual students attending a CE school were indicated as eligible for 
free lunch via a direct certification process and included as eligible for free lunch in the analysis file, 
and a small number of others had an individual status indicating a paid lunch status and were 
included as such. The CE category was used only for the 2012–2013 school year because no charter 
schools had adopted community-eligibility status before the 2012–2013 school year. Before 2012–
2013, DCPS students attending a CE school and not identified as eligible for free lunch via direct 
certification were indicated as having no information. Each student belonged to one category for 
each school year. For predicting post-test scores of students for the 2011–2012 school year, we did 
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not include information on their status from the 2012–2013 school year. The student poverty status 
indicators for each school year are summarized in Table II.2.  

Table II.2. Method of Accounting for Student Poverty Status 

School Year of 
Status 

Ineligible for Free or 
Reduced-Price 

Lunch 
Eligible for Free 

Lunch 

Eligible for 
Reduced-Price 

Luncha 

Attended 
Community-

Eligible Schoolb No Informationc 

2009–2010 Included Included   Included 

2010–2011 Included Included Included  Included 

2011–2012 Included Included Included  Included 

2012–2013 Included Included Included Included  

Notes: Each student is defined as belonging to a single category for each status year.  

Community-eligible schools are schools that do not annually collect poverty status for individual 
students. 
aWe included students eligible for reduced-price lunch with those eligible for a free lunch in the 2009–
2010 school year because data are not available to distinguish free and reduced-price lunch status for 
some students that year. 
bWe included students who attended community-eligible schools in the 2009–2010, 2010–2011, or 
2011–2012 school years with those eligible for free lunch if another data source was available to certify 
their free lunch status and in the “no information” category otherwise. We included those who attended 
community-eligible schools in the 2012–2013 school year with students eligible for free lunch if another 
data source was available to certify their free lunch status and in the “attended community-eligible 
school” category otherwise. 
cFor students in the “no information” category in the 2012–2013 school year, we imputed poverty status 
for the three included categories, using the same imputation method as that for students missing other 
student background data. 

We calculated the two classroom achievement measures (average pre-test achievement and 
standard deviation of pre-test achievement) using the same-subject pre-test scores. We calculated the 
percentage of students in a classroom who were eligible for FRL only for those in grades 6 to 8 in 
the 2012–2013 school year. We calculated this percentage as the number of students identified in the 
2012–2013 school year as eligible for free lunch, reduced-price lunch, or who attended a CE school, 
divided by the number of students in the classroom and excluding students with no information.7 
All three classroom characteristic calculations were weighted by the teacher dosage associated with 
the teacher-student combination. The classroom characteristics were measures of a student’s peers; 
for each student, the classroom characteristics measured the characteristics of others in the 
classroom, excluding that student. 

We imputed data for students who were included in the analysis file but had missing values for 
one or more student characteristics. Our imputation approach used the values of nonmissing 
student characteristics to predict the value of the missing characteristic. We did not generate imputed 
values for poverty status in the 2009–2010 to 2011–2012 school years; instead, we included a “no 
information” indicator for these students. Because there were few students with missing poverty 

                                                 
7 In contrast to the individual poverty status CE variable, we consider all students attending a CE school as free or 

reduced-price eligible for the classroom characteristic calculation, including a small number whose individual status was 
paid lunch. This choice ensures that the relationship between classroom poverty status and achievement is estimated 
based on variation between classrooms in schools that collected individual poverty status information in the 2012–2013 
school year.  
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information in the 2012–2013 school year, however, a “no information” indicator would have been 
relatively imprecisely estimated. Therefore, for these students, we imputed values for the three 
poverty status categories for that year using the same imputation method used for students missing 
other student background data. For students who did not attend a DC school for part of the 
previous year, we used a Bayesian method to impute missing attendance data, based on other 
student characteristics in addition to attendance during the portion of the year spent in DC.8 Finally, 
we did not generate imputed values for the same-subject pre-test; we dropped from the analysis file 
any students with missing same-subject pre-test scores.9  

Table II.3 shows the characteristics of students included in the reading value-added model. The 
characteristics of students in the math value-added model differed from those in the reading model 
by no more than 1.0 percentage point. 

Table II.3. Characteristics of Students from the 2012–2013 School Year in the Reading Value-Added Model 

 Grades 4 and 5  Grades 6 to 8  Grades 9 and 10 

 Number Percent  Number Percent  Number Percent 

Included in Value-Added Model 6,867 100.0 9,372 100.0 3,610 100.0 

Eligible for free lunch 3,729 54.3 5,645 60.2 2,037 56.4 

Eligible for reduced-price lunch 194 2.8 355 3.8 159 4.4 

Attended community-eligible school 1,630 23.7 1,750 18.7 716 19.8 

Ineligible for free or reduced-price lunch 1,314 19.1 1,622 17.3 698 19.3 

Limited English proficiency 428 6.2 553 5.9 231 6.4 

Specific learning disability 475 6.9 768 8.2 293 8.1 

Other learning disability 462 6.7 580 6.2 189 5.2 

Transferred schools during school year 106 1.5 151 1.6 67 1.9 

Notes: The total of the counts across grade spans in the top row corresponds to the total for reading in the final 
row of Table II.1. 

 All percentages are based on the counts in the top row. 

Student characteristics were calculated as a weighted average for students enrolled in both a DCPS and 
charter school. The counts and percentages were not weighted in any other way. 

Participation in the reading value-added model for grades 9 and 10 was optional for charter school LEAs. 

The poverty status variables indicate students’ poverty status in the 2012–2013 school year. 

Students who attended community-eligible schools are included with students eligible for free lunch if 
another data source was available to certify their free lunch status. 

For all student characteristics in this table, less than 1 percent of students have missing data. 

                                                 
8 We generated a predicted value by using the values of nonmissing student characteristics and combined this 

information with the actual attendance data for the part of the year spent in DC. With this method, the more time a 
student spends in a DC school, the more his or her imputed attendance measure relies on actual attendance data from 
the part of the year spent in DC. Conversely, the less time spent in DC, the more the imputed attendance measure relies 
on the predicted value. We implemented this approach by using a beta distribution with beta/binomial updating 
(Lee 1997). 

9 Less than 1 percent of students in the value-added analysis file had missing opposite pre-test scores in any grade-
subject combination, with the exception of grade 10 reading. The opposite-subject pre-test score for grade 10 reading is 
from the grade 8 math test and was missing for 16 percent of grade 10 students. 
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C. School and Teacher Dosage 

For charter school teachers and students, the roster confirmation data provided by OSSE 
(described in detail below) defined the eligible teachers and students included in the analysis file. 
Similarly, DCPS provided roster confirmation data that defined its eligible teachers and students. 
Individual LEAs participating in RTT were responsible for contributing lists of teachers of math and 
reading in grades 4 to 8; in addition, some LEAs, including DCPS, chose to include reading/ELA 
teachers in grades 9 and 10.10 Each LEA determined the list of eligible teachers, using guidance from 
OSSE that teachers with primary responsibility for providing instruction in math and 
reading/English language arts in the relevant grades should be included. In general, only regular 
education teachers were eligible to receive value-added estimates; special education teachers were 
not, but resource and Read 180 teachers were eligible. Resource teachers provide additional 
instruction to students and tend to work with a large number of students throughout the school 
year.   

Given that some students moved between schools or were taught by a combination of teachers, 
we apportioned their achievement among more than one school or teacher. We refer to the 
proportion of time the student was enrolled at each school and with each teacher as the “dosage.” 

1. School Dosage 

Based on administrative data from OSSE and DCPS, which contained dates of school 
withdrawal and admission, we assigned every student a dosage for each school attended. School 
dosage equals the fraction of the first three quarters of the school year that a student was officially 
enrolled in that school. In determining dosage, we used school calendars from each participating 
LEA. We used only the first three quarters of the year because students in most LEAs start taking 
their tests shortly after the end of the third quarter.11  

Recognizing that a teacher is unlikely to have an appreciable educational impact on a short-term 
student, we set dosage as equal to zero for students who spent less than 5 percent of the year at a 
school. Apart from this, we assume that learning accumulated at a constant rate, and therefore treat 
days spent at one school as interchangeable with days spent at another. For example, if a student 
split time equally between two schools, we set the dosage of each school to 50 percent, regardless of 
which school the student first attended. 

2. Teacher Dosage 

To determine which students received math and reading instruction from eligible teachers 
during the 2012–2013 school year, DC schools conducted a roster confirmation among teachers of 
math in grades 4 through 8 and teachers of reading/ELA in grades 4 through 10. In most cases, 
teachers received lists of students who appeared on their course rosters. Teachers could also add 

                                                 
10 As an additional reference to ensure that ineligible teachers were not mistakenly included in the analysis file, 

DCPS provided an official comprehensive list of teachers of math and reading in grades 4 through 10 who were eligible 
to receive individual value-added scores. 

11 There are two exceptions. One LEA uses trimesters rather than quarters. In a school at another LEA, the third 
quarter ends after the DC CAS tests are administered. In both of these cases, we used enrollment data from the first two 
terms and from the third term before the beginning of the testing window for the DC CAS.  
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students to their rosters. In other cases, teachers were responsible for adding all of the students to 
their rosters. For each of the first three quarters, teachers indicated whether they taught each subject 
to each student and, if so, the proportion of time they taught the student. For example, if a student 
spent two days a week in an eligible teacher’s classroom learning math and three days per week in 
another classroom with a special education teacher while the student’s classmates learned math with 
the eligible teacher, the student was recorded as having spent 40 percent of instructional time with 
the eligible teacher. In this instance, the dosage was 40 percent. In recording the proportion of time 
they spent with each student in a given class and subject, teachers rounded to the nearest 20 percent, 
such that the possible responses were 0, 20, 40, 60, 80, and 100 percent. If a teacher claimed a 
student for less than 100 percent in any quarter, the teacher indicated the reason for the reduction, 
but was not responsible for naming other teachers who taught the student. OSSE ensured that all 
eligible charter school teachers completed the roster confirmation. Within each charter LEA, a 
central office administrator, principal, or designee verified the confirmed rosters. Likewise, in DCPS, 
principals verified eligible teacher-confirmed rosters. Central office staff at DCPS also followed up 
with DCPS teachers as necessary. 

To create teacher dosage, we multiplied the school dosage for a teacher-student pair for each 
term by the percentage from the roster confirmation. For example, if the three terms for a given 
LEA were of equal length, a student spent the first two terms in a teacher’s school, and the teacher 
claimed the student for 60 percent dosage during those terms, the teacher dosage would be 
0.67*0.60 = 0.40. When two or more teachers claimed the same students at 100 percent during the 
same term, we assigned each teacher full credit for the shared students. This reflects a decision by 
OSSE that solo-taught and co-taught students contribute equally to teachers’ value-added estimates. 
We thus did not subdivide dosage for co-taught students. When the same teacher claimed the same 
student in multiple classrooms, we assigned the teacher credit for the student in each classroom 
based on the percentages the teacher claimed for the student in the roster confirmation. We used the 
same procedures to construct teacher-student links for the 2011–2012 school year. Table II.4 shows 
how many teachers shared students with another teacher in the value-added model and what 
percentage of their students was shared. As shown in the table, 14.8 percent of math teachers and 
16.3 percent of reading teachers shared all of their students with other teachers, whereas  
73.8 percent of math teachers and 59.1 percent of reading teachers did not share any students with 
another teacher. 

Table II.4. Teachers Receiving Value-Added Estimates, by Subject and Extent of Co-Teaching 

Percentage of Students Shared with  
Another Teacher in Value-Added Model 

Math  Reading 

Number Percent  Number Percent 

None 315 73.8 315 59.1 

1–10 percent 25 5.9 46 8.6 

11–50 percent 17 4.0 57 10.7 

51–99 percent 7 1.6 28 5.3 

All students 63 14.8 87 16.3 

Total 427 100.0 533 100.0 

Notes: Teachers received estimates if they were linked to at least 15 eligible students. 

A co-teacher is any teacher who shares at least one student with another teacher in the value-added 
model. 
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III. ESTIMATING VALUE ADDED 

A. Regression Estimates 

We developed a linear regression model to estimate effectiveness measures for teachers. After 
assembling the analysis file, we estimated the regression model separately by subject (math or 
reading) and grade span. We used two grade spans in math (grades 4 and 5 and grades 6 through 8) 
and three in reading (grades 4 and 5, 6 through 8, and 9 and 10). In the regression equation, the 
post-test score depends on prior achievement, student background characteristics, classroom 
characteristics, the student’s teacher, and unmeasured factors. 

For a given teacher t and student i in classroom c, school year j, and grade g, the regression 
equation may be expressed formally as: 

(1) 
    21 1ticjg jg jg ij ticj tijg tijg ticjgi j i jY S O   

         β X π C δ T θ T ,
  

where Yticjg is the post-test score for student i and Si(j-1) is the same-subject pre-test for student i 
during the previous year. The variable Oi(j-1) denotes the pre-test in the opposite subject. Thus, when 
estimating teacher effectiveness in math, S represents math tests with O representing reading tests, 
and vice versa. The pre-test scores capture prior inputs into student achievement. For 10th-grade 
reading students, for whom no pre-test score in math is available from the year before, we use a 
lagged pre-test score from two years earlier in grade 8. The pre-test scores capture prior inputs into 
student achievement, and the associated coefficients, jg and jg , vary by grade and year. The 

vector Xij denotes the control variables for individual student background characteristics. The 

coefficients on these characteristics, β , are constrained to be the same across both years and the set 
of grades included in a grade span. The vector Cticj represents the characteristics of classroom c; the 
coefficients on these classroom characteristics, π , are estimated using student, teacher, and 
classroom information from two years (see Section C below). 

The vector Ttijg included a binary variable for each teacher–grade–year combination. For 
example, a teacher who taught math in grades 4 and 5 during both the 2011–2012 and 2012–2013 
school years had four variables in Ttijg. Under the FRM+, described in detail in Section B, we 
duplicated each teacher-student-classroom-year link in the analysis file so that each student 
contributes the same total dosage to the calculation of the parameters. We included teacher links for 
the duplicate—or “shadow”—student-classroom-year observations as a distinct set of indicators 
T2tijg in the regression. Each teacher-student-classroom-year observation has one nonzero element 
in Ttijg or T2tijg. Measures of teacher effectiveness for the 2012–2013 school year were contained in 
the coefficient vector δ for teacher-grade combinations from that school year (j = 2013). We did 
not directly use δ for j = 2012 or the coefficient vector θ  to measure teacher effectiveness in the 
2012–2013 school year. Rather than dropping one element of Ttijg or T2tijg from the regression, we 
estimated the model without a constant term. We also mean-centered the control variables so that 
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each element of δ  represents a teacher-, grade-, and year-specific intercept term for a student with 
average characteristics.12  

Table III.1 shows the coefficient estimates and standard errors of the control variables in the 
model by subject and grade span. The top panel of Table III.1 shows the average association 
between the pre-tests and achievement on the 2013 DC CAS (measured in points on the test). The 
second panel shows the association between a given student characteristic and achievement. The 
bottom panel shows the association between each of the three classroom characteristics and 
achievement. 

To account for team teaching, we used the Full Roster-Plus Method, whereby each student 
contributed one observation to the model for each teacher to whom he or she was linked, based on 
the roster confirmation process. Thus, the unit of observation in the analysis file was a teacher-
student-classroom-year combination. This method of accounting for team teaching is based on the 
assumption that teachers contribute equally to student achievement within each team (Hock and 
Isenberg 2012). To allow for the inclusion of classroom characteristics, teacher-student observations 
were included for each classroom shared by the teacher-student pair during a year. The model 
included teacher-student-classroom links from the 2011–2012 and 2012–2013 school years. 

Because some students contributed multiple observations, we estimated the coefficients by 
using weighted least squares (WLS) rather than ordinary least squares (OLS). In this method, the 
teacher-grade-year variables in Ttijg are binary, and we weighted each teacher-student combination 
by the teacher dosage associated with that combination. We addressed the correlation in the error 
term, tijg, across multiple observations by using a cluster-robust sandwich variance estimator 
(Liang and Zeger 1986; Arellano 1987) to obtain standard errors that are consistent in the presence 
of both heteroskedasticity and clustering at the student level. 

In practice, to account for classroom composition and measurement error in the pre-tests, we 
estimated equation (1) using a multistep method described in Sections C and D. The method 
includes three regression steps: 

1. Account for classroom characteristics (average and standard deviation of pre-test 
achievement and percentage eligible for FRL). We accounted for the relationship 
between the characteristics of students’ peers in the same classroom and individual 
student achievement using data from multiple classrooms for each teacher. To obtain 
estimates of the contribution of classroom composition, we constrained the coefficients 
on the teacher variables to be the same across classrooms, including classrooms taught 
in different years. This constraint allowed us to leverage variation across classrooms to 
identify the contribution of classroom composition to student achievement. We then 
subtracted the contributions of classroom characteristics from the post-test to create an 
adjusted post-test measure. 

2. Calculate measures of teacher effectiveness for the 2012–2013 school year. 
Because the first-stage regression pools teacher variables across grade and years, a 
second regression step was necessary to obtain estimates of teacher effectiveness based 

                                                 
12 Mean centering the student characteristics and pre-test scores tends to reduce the estimated standard errors of 

the teacher effects (Wooldridge 2008). 
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on student achievement only from the 2012–2013 school year. In the second-stage 
regression, we used the adjusted post-test from the first stage as the outcome variable 
and included distinct teacher variables for each grade and year. Because we used the 
adjusted post-test, this regression excludes the classroom characteristics but includes 
individual student background characteristics and pre-tests. We then calculated a second 
adjusted post-test score that nets out the contribution of pre-test scores. 

3. Calculate the precision of the estimates. Both the first- and second-stage regressions 
applied a method to address measurement error in the pre-tests. However, because of 
computational limitations with this method, we could not obtain measures of the 
precision of value-added estimates from the second-stage regression. In this final 
regression step, we used newly adjusted post-tests to produce standard errors for the 
estimates of teacher effectiveness that accounted for multiple observations for each 
student in the regression. The regression in this step was identical to that from the 
second step except that we used the newly adjusted post-tests instead of controlling for 
pre-test. 

The final teacher regression yields separate value-added coefficients for each grade-year 
combination in which a teacher was linked to students. We estimated a grade- and year-specific 
coefficient for a teacher only if the teacher had at least seven students in that grade.13 We then 
aggregated teacher estimates across grades to form a single estimate for each teacher (see Section E 
below). 

  

                                                 
13 Although teachers must teach at least 15 students for DCPS to evaluate them on the basis of individual value 

added, we included in the regression those teachers with 7 to 14 students for two reasons. First, we expected that 
maintaining more teacher-student links would lead to coefficients on the covariates that are estimated more accurately. 
Second, we expected that value-added estimates for these teachers would provide useful data to include in the 
standardization and shrinkage procedures described below.  
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How to Interpret Table III.1 

Table III.1 displays the regression coefficients from the value-added model. In other words, it 
describes the relationships between the characteristics of DC students and achievement on the post-
test. The coefficients give the amount of the increase—or decrease if the coefficient is negative—in the 
predicted score when a characteristic increases by one unit. For example, the coefficient of 0.77 in the 
first row of the first column of the table indicates that an increase by one DC CAS point on a student’s 
pre-test score is associated with a 0.77 point increase in the student’s predicted score on the 4th- or 
5th-grade math post-test. Similarly, the coefficient on the fraction of the prior year a student attended 
school indicates that a student who attended 100 percent of the prior year is predicted to score 
7.46 points higher than the prediction if the student instead has attended for none of the prior year. 
More than 99 percent of students attended 75 percent of the prior year or more, so the typical 
contribution of prior attendance to the predicted score is much smaller than this change of 7.46 points 
might suggest; the change in predicted scores associated with a change in attendance from 75 to 
100 percent is 1.87 DC CAS points. 

For characteristics that are yes/no indicators, the coefficient gives the increase in the predicted 
score for a student who has that characteristic relative to a student who does not. For example, 
students in grades 4 and 5 in math who have limited English proficiency are predicted to score 
0.07 points lower than students who do not have limited English proficiency. For the four indicators of 
student poverty status, the coefficients measure the difference in the predicted score of a student with 
that status (for example, students known to be ineligible for FRL) relative to a student who is eligible for 
free lunch.  

Each regression coefficient describes a relationship after accounting for all other characteristics 
included in the model. Put another way, the coefficient on a characteristic gives the change in predicted 
achievement when the characteristic is changed from no to yes or increased by one point, assuming 
that all of the students’ other characteristics remain the same. Consequently, coefficients may not 
reflect the relationship we would observe had the other characteristics not been accounted for in the 
value-added model. This feature of multiple regression coefficients can produce counter-intuitive 
relationships between characteristics and achievement if the contributions of one characteristic are 
accounted for largely by another characteristic in the model. For example, coefficients on limited 
English proficiency status would likely be consistently negative and greater in magnitude if the model 
did not also account for students’ pre-test scores because students with limited English proficiency tend 
to have lower pre-test scores. 

To put the magnitude of the coefficients into perspective, they can be compared to the typical 
range of student achievement on the DC CAS. The standard deviation of student achievement on the 
grade 4 math post-test was 16.4 DC CAS points, indicating that about two- thirds of students scored 
within 16.4 points above or below the average score on the assessment. The standard deviations for 
other grades ranged from 14.6 to 17.3 points in math and from 12.2 to 14.8 points in reading. 

The number in parentheses below each coefficient is the standard error of the coefficient—a 
measure of precision. A more precise coefficient indicates with more certainty that a coefficient reflects 
the actual relationship between the characteristic and achievement. Coefficients with smaller standard 
errors are more precise. The coefficients on the pre-tests are more precise than those on individual 
background characteristics. Roughly, a coefficient that is at least twice as large as its standard error is 
said to be statistically significant, meaning that it is likely that the direction of the relationship—whether 
positive or negative—reflects the actual relationship between the characteristic and achievement and is 
not produced by chance.  
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Table III.1. Coefficients on Covariates in the Math and Reading Value-Added Models, by Grade Span 

 Math  Reading 

Variable 
Grades 
4 and 5 

Grades 
6 to 8  

Grades 
4 and 5 

Grades 
6 to 8 

Grades 
9 and 10 

Pre-Test Scores (average coefficients)       
Same subject, all grades in span 0.77 0.68  0.61 0.62 0.58 
 (0.01) (0.01)  (0.01) (0.01) (0.01) 

Opposite subject, all grades in span 0.09 0.14  0.16 0.16 0.07 
 (0.01) (0.02)  (0.01) (0.01) (0.01) 

Individual Student Background Characteristics 

Limited English proficiency -0.07 0.47  -1.56 -0.90 -0.11 
 (0.32) (0.32)  (0.33) (0.30) (0.53) 

Specific learning disability -2.08 -0.97  -2.81 -1.86 -2.80 
 (0.36) (0.31)  (0.35) (0.26) (0.45) 

Other learning disability -1.98 -1.96  -2.85 -2.73 -1.67 
 (0.38) (0.39)  (0.36) (0.33) (0.68) 

Transferred schools during the school year -1.66 -1.66  -1.10 -0.72 -2.55 
 (0.69) (0.62)  (0.57) (0.52) (1.02) 

Fraction of the prior year student attended  7.46 7.64  -0.80 0.96 -1.52 
school (1.67) (1.65)  (1.44) (1.34) (2.27) 

Ineligible for free or reduced-price lunch 0.51 0.68  0.08 0.62 0.42 
 (0.51) (0.40)  (0.48) (0.35) (0.50) 

Eligible for reduced-price lunch -0.58 -0.17  0.06 -0.46 -0.16 
 (0.61) (0.55)  (0.52) (0.46) (0.74) 

Attended community-eligible school -0.07 0.73  0.24 0.52 -0.37 
 (0.38) (0.37)  (0.29) (0.30) (0.56) 

Classroom Characteristics 

Average classroom pre-test score -0.08 0.10  0.03 0.04 0.18 
 (0.02) (0.01)  (0.02) (0.01) (0.02) 

Standard deviation of classroom -0.09 0.07  -0.09 -0.04 0.02 
pre-test scores (0.02) (0.02)  (0.02) (0.02) (0.03) 

Fraction free or reduced-price lunch n.a. -1.56  n.a. 0.62 0.88 
in classroom  (0.49)   (0.39) (0.99) 

Notes: Standard errors are in parentheses. 

The reported coefficient estimates of pre-test scores represent averages of the coefficients estimated 
separately for the grades included in the grade span for the row. The associated standard errors similarly 
represent averages across grades. The standard errors thus do not account for the variability of the estimates 
across grades. These numbers are presented for descriptive purposes only and should not be used to 
conduct statistical inference. 

For students in grades 4–9, pre-test scores are from the prior grade in the 2011–2012 school year. For 10th-
grade students, same-subject pre-test scores are from 9th-grade test scores in the 2010–2011 school year, 
and opposite-subject pre-test scores are from 8th-grade test scores in the 2009–2010 school year. 

The table excludes coefficients on pre-test variables estimated separately for students from the 2011–2012 
school year. Additionally, the table excludes coefficients on variables that indicate poverty status between the 
2009–2010 and 2011–2012 school years. The poverty status variables reported in the table indicate students’ 
poverty status in the 2012–2013 school year. All coefficient estimates of variables that indicate students’ 
poverty status in previous years are no larger than 1.9 DC CAS points in absolute value. 

Students who attended community-eligible schools are included with students eligible for free lunch if another 
data source was available to certify their free lunch status. 

Coefficients on the poverty status variables are relative to students who are eligible for free lunch―the 
excluded category. 

n.a. = not applicable 
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B. Full Roster-Plus Method 

The Full Roster-Plus Method (FRM+) is a modification of the FRM used in the DC value-
added model estimated in 2011–2012. FRM+ handles co-teaching exactly as the FRM, but equalizes 
the contribution of students taught by multiple teachers to the estimation of the coefficients on 
student background characteristics. Under FRM+, students count toward the estimation of student 
background characteristics equally, regardless of how many eligible teachers claim them and the 
amount of time they spend with eligible teachers. To do this, we replicated observations in the data 
set and assigned dosage to the replicated observations so that all students have the same amount of 
total dosage in the analysis file. We linked the new records to artificial teacher indicators so that each 
teacher in the data set received a “shadow teacher” who absorbed the extra dosage for each student 
required to assign each student the same total dosage. The shadow teacher links were recorded in 
T2tijg, distinct from Ttijg, the teacher links in the original observations. We did not change dosage for 
the original observations in this process; dosage measures the proportion of the year students spend 
with an eligible teacher. Each student thereby contributed equally to the estimates of student 
characteristics without affecting the proportional contributions of co-taught students to measures of 
teachers’ effectiveness.14,15 

C. Accounting for Classroom Characteristics 

We accounted for the characteristics of students’ peers in the same classroom in addition to 
individual student characteristics in the first-stage regression. If these classroom characteristics 
influence student achievement, it is possible that omitting them would produce biased measures of 
teacher effectiveness. For two reasons, classroom characteristics may predict student achievement. 
First, the mix of students in each classroom could affect individual student achievement. These 
direct impacts of classroom peers on a student’s achievement sometimes are called peer effects 
(Hoxby and Weingarth 2006; Sacerdote 2011). Second, classroom characteristics may help to 
account for measurement error. The method used to account for measurement error in the pre-tests 
(described in Section D) may not account for all measurement error. Including classroom 
characteristics could address this additional measurement error if students’ true achievement levels 
are related to their peers’ characteristics. The effect of measurement error on a classroom 
characteristic coefficient estimate could be positive or negative, depending on the direction of the 
relationship between the measurement error and achievement. Thus, the classroom coefficient 
estimate could be positive or negative, depending on the magnitude of this effect. 

The vector Cticj in equation (1) represents three classroom characteristics included in the model: 
mean classroom pre-test score, the standard deviation of classroom pre-test scores, and the 

                                                 
14 Just as in the FRM, standard errors are clustered at the student level for the FRM+. Thus, adding additional 

observations for shadow teachers and altering the maximum dosage does not artificially increase the precision of the 
teacher estimates. 

15 Because we did not create links to a catch-all ineligible teacher, some students had a total dosage of less than one 
hundred percent across all teacher-student links. Under FRM+, as under FRM, co-teachers are functionally considered a 
team that receives the same value-added estimate, so the value-added estimate of an eligible teacher who shared students 
with ineligible teacher(s) would not have directly changed whether or not we had created teacher-student links to a 
catch-all ineligible teacher. 
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proportion of FRL students in the classroom.16,17 We used all three variables for the middle and high 
school grade spans, but excluded FRL from the elementary grade span. Additionally, we calculated 
the proportion of FRL students for records from the 2012–2013 school year but not from 2011–
2012. We calculated this proportion only for a single school year to ensure that all comparisons in 
the proportion of FRL students were across classrooms in the same year. Comparisons across years 
could lead to spurious relationships with student achievement because of previously described 
changes in the FRL data between years (Table II.2). The exclusion of the proportion of FRL 
students from the elementary school grade span was a consequence of our decision to calculate this 
proportion for a single year. Multiple years of FRL data would have been necessary to obtain the 
multiple classrooms needed to account for classroom characteristics of 4th- and 5th-grade teachers, 
most of whom are homeroom teachers.  

Estimation of a model accounting for classroom characteristics required a multistep strategy 
because we constrained a teacher effect to be the same across years when estimating classroom 
characteristics. Pooling teacher variables across years in a first-stage regression allowed us to leverage 
variation across classrooms to estimate π . So when estimating the contribution of classroom 
characteristics, we included only a single variable for each teacher across all of a teacher’s 
classrooms, including classrooms taught in different years and students in different grades. In a later 
step, we calculated a single-year effect for teachers so that their performance in 2011–2012 did not 
directly affect a measure of their performance in 2012–2013.18 

The first-stage value-added model is described by the equation: 

(2)    1 1 1 1 1 1 2 11 1ticjg jg jg ij ticj ti ti j g ticjgi j i jY S O d    
            β X π C δ T θ T ρG . 

The subscript 1 distinguishes the first-stage coefficients from those in equation (1) and in 
subsequent steps. The vectors Tti and T2ti include variables for each teacher, pooled across 
classrooms from all grades and years. To avoid potential bias that might arise from the sorting of 
teachers and students across schools, we did not pool classrooms across schools for teachers who 
changed schools from one year to the next when estimating the contribution of classroom 
composition. Instead, for purposes of estimating equation (2), we treated these teachers as a separate 
teacher for each school in which he or she taught. We included the variable dj, a binary indicator for 
the 2012–2013 school year, and the vector Gg, of binary variables for each grade in a grade span, to 
measure differences across grades and years. We included these variables in equation (2), but not the 
subsequent regression steps, because the teacher variables in (2) are not grade and year specific. We 

                                                 
16 The classroom composition measures are calculated for student i based on all other students in the classroom, 

excluding this student. 

17 The fraction of FRL students in the classroom was calculated only for classrooms in the 2012–2013 school year, 
and set to zero for all classrooms in 2011–2012. Consequently, the relationship between classroom poverty status and 
achievement is estimated based on poverty data from only the 2012–2013 school year. 

18 We excluded records from classrooms with fewer than 10 students to estimate π  because classroom 
characteristics based on classrooms with few students may be more likely to be mismeasured and exercise undue 
influence on the contribution of classroom characteristics to student achievement. We included these records in 
subsequent steps. We also excluded classrooms taught by resource teachers, as indicated by DCPS or OSSE. Six percent 
of records were excluded from the first-stage elementary and middle school grade-span regressions, and 10 percent of 
records were excluded from the first-stage high school grade-span regression. 
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corrected for measurement error in the pre-test scores when estimating equation (2). In Section D, 
we describe how we corrected for measurement error in this first stage as well as in subsequent 
steps. 

Based on the results of estimating equation (2), we calculated an adjusted post-test for each grade 
and subject that nets out the contribution of the measures of classroom composition: 

(3) 11 ˆticjg ticjticjgA Y   C . 

The vector A1ticjg represents the student post-test outcome, net of the estimated contribution of 
classroom composition. To calculate (3) for students in most classrooms, we used the same values 
of Cticj from equation (1). For students in small classrooms, and for classrooms taught by resource 
teachers, we imputed the classroom characteristics in Cticj, using information about other classrooms 
in the same school and the values of individual student characteristics to predict the values of each 
classroom characteristic.  

We used the adjusted post-test in place of the actual post-test to estimate single-year measures 
of teacher effectiveness for the 2012–2013 school year. In Section D, we describe how we used the 
adjusted post-test to produce single-year estimates of teacher effectiveness.  

D. Measurement Error in the Pre-Tests 

We corrected for measurement error in the pre-tests by using grade-specific reliability data 
available from the test publisher (CTB/McGraw Hill 2010, 2011, 2012). As a measure of true 
student ability, standardized tests contain measurement error, causing standard regression techniques 
to produce biased estimates of teacher effectiveness. To address this issue, we implemented a 
measurement error correction based on the test/retest reliability of the DC CAS tests. By netting out 
the known amount of measurement error, the errors-in-variables correction eliminates this source of 
bias (Buonaccorsi 2010). 

Correcting for measurement error required two additional steps because of computational 
limitations with the measurement error correction method related to producing measures of 
precision. Having estimated the first-stage regression given by equation (2), we used the classroom-
characteristic-adjusted post-tests from equation (3) to estimate a second regression step. In both of 
the first two regression steps, we applied the errors-in-variables correction. The second regression 
step included distinct teacher variables for each teacher-grade-year combination. A third and final 
regression step was necessary to calculate standard errors on teachers’ estimates because of 
computational limitations with the measurement error correction method.  

We used a dosage-weighted errors-in-variables regression to obtain unbiased estimates of the 
pre-test coefficients for each grade and year. For students in grades 4 through 9, we used the 
published reliabilities associated with the 2012 DC CAS for records from the 2012–2013 school year 
and the 2011 DC CAS for records from the 2011–2012 school year. For grade 10 students in the 
2012–2013 school year, we used the reliabilities associated with the 2012 DC CAS for reading and 
the 2011 DC CAS for math, because the math pre-test is from grade 8. For grade 10 students in the 
2011–2012 school year, we used the reliabilities associated with the 2012 DC CAS for reading 
(because no 2011 reliability data were available) and the 2010 DC CAS for math. 

We estimated the second-stage regression in equation (4) to obtain pre-test relationships 
adjusted for measurement error based on a specification that included distinct teacher variables for 
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each teacher-grade-year combination. Instead of the post-test, the dependent variable in equation (4) 
has been replaced with the adjusted post-test from equation (3). The subscript 2 distinguishes the 
second-stage coefficients from those in other steps. 

(4)    1 2 2 2 2 2 2 21 1ticjg jg jg ij tijg tijg ticjgi j i jA S O   
       β X δ T θ T . 

We then used the measurement-error-corrected values of the pre-test coefficients to calculate a 
second adjusted post-test that, in addition to the contribution of classroom characteristics, also nets 
out the contribution of the pre-tests: 

(5) 
   2 1 2 21 1ticjg ticjg jg jgi j i jA A S O     . 

The vector A2ticjg represents the student post-test outcome, net of the estimated contribution 
attributable to the student’s pre-test and classroom characteristics. 

We estimated a third and final regression step to obtain standard errors that are consistent in 
the presence of both heteroskedasticity and clustering at the student level, because the regression 
includes multiple observations for the same student. This third-stage regression is necessary because 
it is not computationally possible to simultaneously account for correlation in the error term  2ticjg 
across multiple observations and apply the numerical formula for the errors-in-variables correction. 
Thus, we obtained the new adjusted post-test in equation (5) and then estimated the final regression 
in (6): 

(6) 
2 2 2 2 2 2ticjg ij tijg tijg ticjgA      β X δ T θ T .   

As in (4), the regression in equation (6) includes distinct teacher variables for each teacher-grade-year 
combination and includes data from small classrooms. The same subscript 2 appears on the 
coefficients in equation (6) as it did in those in equation (4) because the two regressions produce 
identical coefficient estimates; equation (6) applies a correction only to the standard errors. 

This multistep method likely underestimates the standard error of the estimated δ  because the 
adjusted gain in equation (5) relies on the estimated values of  ,  , and π . This implies that the 
error term in equation (6) is clustered within grade-year combinations and within classrooms. This 
form of clustering typically results in estimated standard errors that are too small, because the 
subsequent regression steps do not account for variability in post-test scores related to pre-test 
scores or classroom characteristics. In view of the small number of grade-year combinations, 
standard techniques of correcting for clustering will not correct the standard errors effectively 
(Bertrand et al. 2004). Correcting for clustering at the classroom level is also problematic, given 
small numbers of classrooms per teacher, especially for homeroom teachers. Nonetheless, with the 
large within-grade and within-year sample sizes, the pre-test coefficients (  and  ) were precisely 
estimated, likely leading to a negligible difference between the robust and clustering-corrected 
standard errors. However, the relationships between classroom composition and the post-test ( π ) 
were less precisely estimated than the pre-test relationships, which could lead to more substantial 
underestimation of the standard errors.  

Underestimated standard errors could result in insufficient shrinkage of some teachers’ value-
added estimates, discussed in Section F. When using value-added point estimates for teacher 
evaluations, the key concern is not whether the standard errors of the estimates are universally 
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underestimated, but whether the standard errors for some teachers are disproportionately 
underestimated, which can lead to some teacher estimates shrinking too little relative to other 
teacher estimates in the final step. Thus, there is a trade-off in the design of the model between 
insufficient shrinkage for some teachers and accounting for classroom characteristics. This approach 
emphasizes accuracy and face validity of teachers’ value-added estimates over any consequences of 
underestimated standard errors for the shrinkage procedure.19 

E. Generalizing Estimates to Be Comparable Across Grades 

1. Transforming Estimates into Generalized DC CAS Points 

Both the average and variability of value-added estimates may differ across grade levels, leading 
to a potential problem when comparing teachers assigned to different grades. The main concern is 
that factors beyond teachers’ control may drive cross-grade discrepancies in the distribution of 
value-added estimates. For example, the standard deviation of adjusted post-test scores might vary 
across grades as a consequence of differences in the alignment of tests or the retention of knowledge 
between years. However, we sought to compare all teachers to all others in the regression, regardless 
of any grade-specific factors that might affect the distribution of gains in student performance 
between years.20 Because we did not want to penalize or reward teachers simply for teaching in a 
grade with atypical test properties, we translated teachers’ grade-level estimates from the 2012–2013 
school year so that each set of estimates is expressed in a common metric of “generalized” DC CAS 
points. Aside from putting value-added estimates for teachers onto a common scale, this approach 
leads to distributions of teacher estimates that are more equal across grades. It does not reflect a 
priori knowledge that the true distribution of teacher effectiveness is similar across grades. Rather, 
without a way to distinguish cross-grade differences in teacher effectiveness from cross-grade 
differences in testing conditions, the test instrument itself, or student cohorts, this approach reflects 
an implicit assumption that the distribution of true teacher effectiveness is the same across grades. 

We standardized the estimated regression coefficients so that the mean and standard deviation 
of the distribution of teacher estimates is the same across grades. First, we subtracted from each 
unadjusted estimate the average of all estimates within the same grade. We then divided the result by 
an estimate of the standard deviation within the same grade. To reduce the influence of imprecise 
estimates obtained from teacher-grade combinations with few students, we calculated the average 
using weights based on the number of students taught by each teacher. Our method of calculating 
the standard deviation of teacher effects also downweights imprecise individual estimates. Finally, 
we multiplied by the square root of the teacher-weighted average of the grade-specific variances, 
obtaining a common measure of effectiveness on the generalized DC CAS-point scale. 

                                                 
19 For example, accounting for classroom characteristics may address potential bias from tracking of students into 

classrooms (Protik et al. 2013). 

20 Because each student’s entire dosage with eligible teachers was accounted for by teachers in a given grade, the 
information contained in grade indicators would be redundant to the information contained in the teacher variables. 
Thus, it is not possible to control directly for grade in the value-added regressions. 
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Formally, the value-added estimate expressed in generalized DC CAS points is the following: 

(7) 
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where ̂ tg  is the grade-g estimate for teacher t, ̂ g  is the weighted average estimate for all teachers 

in grade g, ˆg  is the estimate of the standard deviation of teacher effectiveness in grade g, Kh is the 

number of teachers with students in grade h, and K is the total number of teachers. The teacher-
weighted average of variances is across seven grades for reading and five for math. The calculation 
in equation (7) is based only on teacher estimates from the 2012–2013 school year; we discarded 
estimates based on the 2011–2012 school year and all shadow teacher estimates also obtained from 
the regression in equation (6).  

In equation (7), we used an adjusted standard deviation that removes estimation error to reflect 
the dispersion of underlying teacher effectiveness. The unadjusted standard deviation of the value-
added estimates will tend to overstate the true variability of teacher effectiveness; because the scores 
are regression estimates, rather than known quantities, the standard deviation will partly reflect 
estimation error. The extent of estimation error may differ across grades, and the resulting 
fluctuations in the unadjusted standard deviation of teacher scores could lead to over- or 
underweighting one or more grades when combining scores across grades. Scaling the estimates 
using the adjusted standard deviation ensures that estimates of teacher effectiveness in each grade 
have the same true standard deviation by spreading out the distribution of effectiveness in grades 
with relatively imprecise estimates.21  

We calculated the error-adjusted variance of teacher value-added scores separately for each 
grade as the difference between the weighted variance of the grade-g teacher estimates and the 
weighted average of the squared standard errors of the estimates. The error-adjusted standard 
deviation ˆg  is the square root of this difference. We chose the weights based on the empirical 

Bayes approach outlined by Morris (1983). In this approach, the observed variability of the teacher 
value-added scores is adjusted downward according to the extent of estimation error.  

Table III.2 shows the adjusted standard deviation of the initial estimates of teacher effectiveness 
derived from the value-added regression as well as the weighted average across all grades produced 
by equation (7). A higher standard deviation for a grade-year combination indicates more dispersion 
in underlying teacher effectiveness before the transformation into generalized DC CAS points. The 
standard deviation of value-added estimates ranged from 2.9 to 4.1 DC CAS points in math and 
from 1.3 to 2.3 DC CAS points in reading. By comparison, the range of the standard deviations of 
student-level achievement across grades was 14.6 to 17.3 DC CAS points in math and 12.2 to  
14.8 points in reading. 

  

                                                 
21 For teachers in grades with imprecise estimates, the shrinkage procedure, described in Section F, counteracts the 

tendency for these teachers to receive final estimates that are in the extremes of the distribution. 
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Table III.2. Student-Weighted Standard Deviations of Value-Added Estimates 

 Grade 
Weighted 
Average Model 4 5 6 7 8 9 10 

Math 4.0 3.5 4.1 2.9 3.0 n.a. n.a. 3.6 

Reading 2.3 2.1 1.7 1.8 1.3 2.3 1.3 1.9 

Notes: Teachers are included in the calculation of the standard deviation for each grade that they teach, 
weighted by the number of students they teach in that grade. 

 n.a. = not applicable 

2. Combining Estimates for Teachers of Multiple Grades 

To combine effects across grades into a single effect, denoted as ̂t , for a teacher with students 
in multiple grades, we used a weighted average of the grade-specific estimates (expressed in 
generalized DC CAS points). We set the weight for grade g equal to the proportion of students of 
teacher t in grade g. Because combining teacher effects across grades may cause the overall average 
to be nonzero, we re-centered the estimates on zero before proceeding to the next step. 

We computed the variance of each teacher’s combined effect as a weighted average of the 
grade-specific squared standard errors of the teacher’s estimates. We set the weight for grade g equal 
to the squared proportion of students of teacher t in grade g. For simplicity, we assumed that the 

covariance across grades is zero. In addition, we did not account for uncertainty arising because ̂ g  

and ˆg  in equation (7) are estimates of underlying parameters rather than known constants. Both 

decisions imply that the standard errors will be underestimated slightly.  

F. Shrinkage Procedure 

To reduce the risk that teachers, particularly those with relatively few students in their grade, 
will receive a very high or very low effectiveness measure by chance, we applied the empirical Bayes 
(EB) shrinkage procedure (Herrmann et al. 2013). Using the EB procedure outlined in Morris 
(1983), we computed a weighted average of an estimate for the average teacher with an estimate 
from the 2012–2013 school year and the initial estimate based on each teacher’s own students. For 
teachers with relatively imprecise initial estimates based on their own students, the EB method 
effectively produces an estimate based more on the average teacher. For teachers with more precise 
initial estimates based on their own students, the EB method puts less weight on the value for the 
average teacher and more weight on the value obtained from the teacher’s own students. 

The EB estimate for a teacher is approximately equal to a precision-weighted average of the 
teacher’s initial estimated effect and the overall mean of all estimated teacher effects.22 Following the 
standardization procedure, the overall mean is zero, with better-than-average teachers having 

                                                 
22 In Morris (1983), the EB estimate does not exactly equal the precision-weighted average of the two values, due 

to a correction for bias. This adjustment increases the weight on the overall mean by (K – 3)/(K – 1), where K is the 
number of teachers. For ease of exposition, we have omitted this correction from the description given here. 
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positive scores and worse-than-average teachers having negative scores. We therefore arrived at the 
following: 

(8) 
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where ̂ EB
t  

is the EB estimate for teacher t, ̂t  
is the initial estimate of effectiveness for teacher t 

based on the regression model (after combining across grades), ˆt  is the standard error of the 

estimate of teacher t, and ̂  is an estimate of the standard deviation of teacher effects (purged of 
sampling error), which is constant for all teachers. The term [ 2̂ /( 2̂ + 2ˆt )] must be less than one. 
Thus, the EB estimate always has a smaller absolute value than the initial estimate—that is, the EB 
estimate “shrinks” from the initial estimate. The greater the precision of the initial estimate—that is, 
the smaller 2ˆt  is—the closer [ 2̂ /( 2̂ + 2ˆt )] is to one and the smaller the shrinkage in ̂t . 
Conversely, the larger the variance of the initial estimate, the greater the shrinkage in ̂t . By applying 
a greater degree of shrinkage to less precisely estimated teacher measures, the procedure reduces the 
likelihood that the estimate of effectiveness for a teacher falls at either extreme of the distribution by 
chance. We calculated the standard error for each ̂ EB

t  using the formulas provided by Morris 
(1983). As a final step, we removed any teachers with fewer than 15 students and re-centered the EB 
estimates on zero. 

G. Translating Value-Added Results to Scores for Evaluation Systems 

We provided OSSE with the original generalized DC CAS point score, percentile rankings for 
individual teachers compared to all DC teachers, and a score converted to a scale from 1.0 to 4.0. 
OSSE determined the method for converting the score in consultation with the Technical Support 
Committee, a group of representatives from six DC LEAs. In this system, the average DC teacher 
(including DCPS and charter school teachers) receives a score of 3.0. The value-added component 
constitutes 30 to 50 percent of the total evaluation score for eligible charter school teachers, but 
each charter LEA determines the exact way in which it will incorporate this information into its 
evaluation system. 

We provided DCPS with value-added results only for DCPS teachers. Because the other 
components of a teacher’s evaluation in IMPACT (the evaluation system for DCPS school-based 
personnel) are based on DCPS norms, DCPS determined that value-added scores for their teachers 
should exclude comparisons to charter school teachers. For this reason, we re-centered the scores 
using only DCPS teachers before we provided value-added scores to DCPS. Consequently, a DCPS 
teacher with a score of zero generalized DC CAS points is an average teacher relative to other DCPS 
teachers. We also provided DCPS with percentile rankings compared to DCPS teachers, with a 
converted score that runs from 1.0 to 4.0 based on a method determined by DCPS. The average 
DCPS teacher on this scale receives a score of 3.0. The score on the 1.0–4.0 scale is incorporated 
into IMPACT. 

Given that the generalized DC CAS point scores provided to DCPS were shifted to be relative 
to the average DCPS teacher, DC CAS-point scores provided to DCPS teachers and DC CAS-point 
scores provided to charter school teachers are not comparable. Likewise, the scores on a scale from 
1.0 to 4.0 are not comparable between DCPS and charter school teachers because OSSE and DCPS 
use different comparison groups and different methods of converting scores. 
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